California offshore wind energy potential
نویسندگان
چکیده
This study combines multi-year mesoscale modeling results, validated using offshore buoys with highresolution bathymetry to create a wind energy resource assessment for offshore California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three categories: 20 m depth for monopile turbine foundations, 50 m depth for multi-leg turbine foundations, and 200 m depth for deep water floating turbines. The CA coast was further divided into three logical areas for analysis: Northern, Central, and Southern CA. A mesoscale meteorological model was then used at high horizontal resolution (5 and 1.67 km) to calculate annual 80 m wind speeds (turbine hub height) for each area, based on the average of the seasonal months January, April, July, and October of 2005/2006 and the entirety of 2007 (12 months). A 5 MW offshore wind turbine was used to create a preliminary resource assessment for offshore CA. Each geographical region was then characterized by its coastal transmission access, water depth, wind turbine development potential, and average 80 mwind speed. Initial estimates show that 1.4–2.3 GW, 4.4–8.3 GW, and 52.8–64.9 GW of deliverable power could be harnessed from offshore CA using monopile, multi-leg, and floating turbine foundations, respectively. A single proposed wind farm near Cape Mendocino could deliver an average 800 MWof gross renewable power and reduce CA’s current carbon emitting electricity generation 4% on an energy basis. Unlike most of California’s land based wind farms which peak at night, the offshore winds near Cape Mendocino are consistently fast throughout the day and night during all four seasons. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Power output variations of co-located offshore wind turbines and wave energy converters in California
The electric power generation of co-located offshore wind turbines and wave energy converters along the California coast is investigated. Meteorological wind and wave data from the National Buoy Data Center were used to estimate the hourly power output from offshore wind turbines and wave energy converters at the sites of the buoys. The data set from 12 buoys consists of over 1,000,000 h of sim...
متن کاملDevelopment of a mathematical model to design an offshore wind and wave hybrid energy system
Fossil Fuels are always considered as environmental pollutants. On the other hand, the political and economic situations highly affect the price of these fuels. Offshore wind and wave, as renewable energy sources, represent the better alternatives for electricity generation. Therefore, it is necessary that wind speeds effectively be estimated due to the absence of field measurements of the wind...
متن کاملEcological and economic cost-benefit analysis of offshore wind energy
Wind energy has experienced dramatic growth over the past decade. A small fraction of this growth has occurred offshore, but as the best wind resources become developed onshore, there is increasing interest in the development of offshore winds. Like any form of power production, offshore wind energy has both positive and negative impacts. The potential negative impacts have stimulated a great d...
متن کاملAssessment of the Present and Future Offshore Wind Power Potential: A Case Study in a Target Territory of the Baltic Sea Near the Latvian Coast
Offshore wind energy development promises to be a significant domestic renewable energy source in Latvia. The reliable prediction of present and future wind resources at offshore sites is crucial for planning and selecting the location for wind farms. The overall goal of this paper is the assessment of offshore wind power potential in a target territory of the Baltic Sea near the Latvian coast ...
متن کاملAssessment of the Potential of Offshore Wind Energy in Taiwan using Fuzzy Analytic Hierarchy Process
In this paper, the application of the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) combined with a set of criteria analysis for the selection of appropriate sites for the development offshore wind energy in Taiwan is presented. The Fuzzy AHP was first conducted to rank the importance and identify the key factors of offshore wind energy successfully. From the numerical results, eight key factors...
متن کامل